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Abstract

Negotiating factional conflict is crucial to successful policymaking. In these conflicts,
actors sometimes employ hardball tactics to strategically rule out outcomes they dislike.
Using a dynamic bargaining model, I explore how the threat and usage of these tactics
impact coordination between actors with conflicting interests. In the model, two players who
prefer different reforms must jointly agree on one to overturn a mutually unfavorable status
quo. Neither knows whether the opponent prefers the status quo over their less-preferred
outcome. Players willing to compromise rationally delay agreement, balancing the incentive
to preempt the opponent against the benefit of waiting to gather better information. Delay is
prolonged when players cannot easily glean one another’s willingness to compromise. I show
that when private willingness to compromise is likely to be revealed, players delay longer.
Thus, higher-leak environments are beneficial to welfare, as the additional delay incentivized
by leaks deters mistakes of preemption.
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1 Introduction

Playing hardball is a dangerous, yet ubiquitous political tactic. Sparring rebel factions kill one
another’s leaders, either allowing one faction to dominate the movement or dooming their collec-
tive cause. Factions within and across political parties kill one another’s bills, either guaranteeing
the passage of more favorable legislation or prolonging legislative gridlock. Moral hazard hawks
and liquidity doves veto one another’s bailout packages, either averting calamitous financial
mismanagement or allowing financial crises to propagate out of control. When do organizations
make such irrevocable commitments, and what holds them back? When do these tactics help
one side get its way, and when do they backfire to the detriment of both sides?

When hardball tactics do backfire, they can cause negotiations to fail in ways that seem
accidental and even preventable. Within the U.S. House of Representatives, the ultraconserva-
tive “Freedom Caucus” has developed a reputation for employing hardball tactics against the
moderate wing of its own party. In 2017, Republican House leadership sought to overturn the
Affordable Care Act, a policy long reviled by both moderate and conservative wings of the party.
Confident that they would be able to win the support of the Freedom Caucus, moderate leaders
brought a partial repeal bill to the floor. However, Freedom Caucus members who had called
for a more radical rollback of the ACA withheld the votes necessary to pass the bill they had
decried as “Obamacare Lite” (Bade, Dawsey and Haberkorn 2017). Caught unexpectedly short
of votes, leaders were forced to pull the bill from the floor, allowing the ACA to remain in place.

The essential quality of hardball tactics is to render the opponent’s preferred outcome un-
obtainable. When one faction brings their preferred legislation to the floor, they force their
opponent into a choice between accepting that legislation or rejecting it. When the European
Central Bank held the IMF hostage over the issue of Greek debt relief, it essentially forced the
IMF to choose between signing onto what the IMF saw as a suboptimal rescue plan, and no
plan at all (James 2024). When snipers opened fire onto a crowd gathered to welcome Juan
Perón’s return to Argentina from exile, they sought to intimidate left-wing Peronists into yield-
ing to right-wing leadership of the movement, marking the beginning of Argentina’s Dirty War
(Horowicz 2009).

Whether due to electoral promises, financial calculations, or ideological convictions, actors
can and do interrupt the usual back-and-forth of negotiations to take one option off the negoti-
ating table. Departing from the conventional bargaining framework, I study how the availability
of these tactics shape players’ beliefs about one another’s willingness to compromise as well the
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likelihood of negotiation failure. I develop a dynamic game with two players who must jointly
agree to one of two possible reforms in order to overturn a status quo which both dislike. Each
player prefers a different reform, but neither initially knows the other’s willingness to compro-
mise: that is, what their opponent would choose if forced to choose between their less-preferred
policy and the status quo. Over time, players receive opportunities to play hardball and per-
manently eliminate one possible reform. If they do so, they leave their opponent with a choice
between a potentially sub-optimal policy and the status quo.

Akin to the textbook Battle of the Sexes, this game hinges on the tension between conflict
and coordination. In the unique equilibrium, “hard” types that would never support their op-
ponent’s policy play hardball as soon as they can, forcing their opponents to choose between
their own favorite policy and the status quo. By contrast, “soft” types, who are willing to com-
promise on their opponent’s outcome to avoid the status quo, stall strategically to learn about
their opponent’s willingness to compromise. They cannot stall indefinitely, however, as doing so
risks being preempted by their opponent and forced into a suboptimal compromise. However,
too-short delay could permanently alienate an obstinate opponent and result in an avoidably
poor outcome, analogous to when Republican leaders preemptively pushed forward a repeal bill
that Freedom Caucus members would not support.

Such mistakes of preemption are possible because groups cannot simply play hardball when-
ever they please. In reality, frictions in intra-group communication and discipline, the cost of
acquiring and mobilizing resources, institutional procedures, idiosyncratic political opportuni-
ties, and other constraints mean that groups cannot instantaneously mobilize troops, respond
to financial crises, or put policies to a vote. Reflecting this, players in the model can only play
hardball when they receive an opportunity to do so. These opportunities arrive stochastically,
meaning that even if a group is ready and willing to play hardball from the start, it may still be
preempted by its opponent if it does not receive a commitment opportunity in time. Soft types
who choose to play hardball before discovering their opponents’ true type knowingly take on the
risk of triggering an avoidable stalemate. Since avoidable miscoordination is most likely when
delay is short, factors which prompt soft types to act more preemptively – such as prior beliefs
about opponents, policy priorities, and the frequency of hardball opportunities – also increase
the likelihood of avoidable miscoordination.

Not all soft types are created equal. Even if both players are soft, they may have differ-
ent costs of compromise due to policy priorities or electoral pressures, or different abilities to
play hardball due to group size or group discipline. In an asymmetric setting of the model,
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I demonstrate that when model parameters can vary between types and players, the shape of
equilibrium remains largely unchanged. In fact, some strategic considerations come into clearer
focus: When a soft type of one player is less inclined to delay hardball, a soft type of its op-
ponent delays even longer. The reason is that once a player races to commit irrespective of
its type, its opponent can no longer make inferences about its willingness to compromise from
type-specific commitment behavior. The opponent’s slower learning translates into longer delay,
in turn deterring mistakes of preemption that cause avoidable miscoordination. Therefore, the
symmetric setting presents a “worst-case scenario” for the likelihood of failed negotiations, as
any amount of symmetry induces longer delay.

Delay is costly for another reason: the risk of private and potentially damaging information
coming to light. When assumed-to-be-private conversations, memos, and drafts are unexpect-
edly leaked, they can directly reveal or pressure parties into revealing the strength or weakness
of their position. This can expose previously secret willingness to compromise, and sometimes
change the direction of negotiations. In negotiations between the IMF and European creditors
over the issue of debt relief, the leak of an internal phone call wherein officials threatened to
walk away from talks if European officials failed to make concessions on debt relief prompted
European officials to backpedal in order to not lose IMF participation and further destabilize
the situation (Dendrinou and Steinhauser 2016; Walker and Stamouli 2016). Do the occurrence
or mere threat of leaks motivate actors to act preemptively, hoping aggression will compensate
for their informational disadvantage? Or do actors slow down to avoid making mistakes against
potentially better informed opponents?

The model yields a clear answer: when a player’s willingness to compromise is exposed, they
delay longer. The logic mirrors that of the asymmetric setting: once a leak occurs, the opponent
of the leaked player has an incentive to play hardball irrespective of their type. Prior to a leak
occurring, a soft opponent would have held back, but afterwards, they no longer have a reason
to wait, and assume a posture identical to a hard opponent. While the leaked group’s chances
of implementing its preferred policy fall, the chances of a failed negotiation also fall. In fact,
simply increasing the average rate of leaks occurring causes soft players to delay more, even
without a leak ever actually occurring. Substantively, these results suggest that in higher-leak
environments, players exhibit cautionary behavior that reduces the incidence of avoidable mis-
coordination, but also lengthens the duration of negotiation.

The paper is organized as follows. Section 2 discusses related theoretical and empirical
literature. Section 3 describes the model. Section 4 characterizes equilibrium in the symmetric
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setting. Section 5 analyzes welfare in the symmetric setting. Section 6 generalizes results to the
asymmetric setting. Section 7 concludes. All proofs can be found in the Appendix.

2 Literature

Factional contestation has historically been studied through the lens of delegation and power-
balancing. For instance, scholars of American congressional politics have long debated the extent
to which leaders are able to use procedural controls and distributions of rewards to control rank-
and-file members (Cox and McCubbins 2005; Kiewiet and McCubbins 1991; Krehbiel 2010). In
nondemocratic and democratic transition contexts, contestation emerges from power balancing
between dictators, elites, and civil society actors (De Mesquita et al. 2005; Meng, Paine and
Powell 2023; O’Donnell and Schmitter 1986; Svolik 2009). In both cases, factional conflict has
long taken a backseat to such questions about the particular institutional structures that enable
certain parties to hold onto power and advance their interests.

A growing body of work, particularly within American politics, has begun to shift the lens
onto internecine conflict itself. For instance, Rubin (2017) studies the history of intra-party or-
ganizations in order to elucidate their role in solving coordination problems and gaining leverage
over non-allied party leaders, and Green (2019) empirically studies the unconventional threat-
making tactics employed by the House Freedom Caucus. Formal theorists have begun to study
these questions as well, with recent papers by Izzo (2020) and Invernizzi (2023) describing the
electoral incentives that shape factional contention. Unraveling the dynamics of factional con-
testation complements the longstanding literature on how democratic and nondemocratic actors
alike bargain for political survival and push through their desired outcomes. As my model makes
clear, different notions of “power” can have vastly different effects on negotiation tactics. Per-
ceived differences in strength may be reflected in players’ priors about one another’s types, the
frequency with which players receive commitment opportunities, or the frequency with which
factions uncover compromising information about their opponents. As my model shows, these
do not impact players’ behavior in identical ways.

Bargaining is the most widely employed formal theoretic approach to analyzing negotiations.
For instance, a long literature on crisis bargaining in international relations, originating with
Fearon (1994), employs reputational bargaining models in the vein of Abreu and Gul (2000) and
Fudenberg and Tirole (1986). In these models, players begin with high distributional demands,
from which ‘rational” players concede at a constant rate over time, while “irrational” behavioral
types hold out forever for their high demand.
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The war of attrition dynamics inherent in these games are reversed by equilibrium learning
structure of my game. This distinction arises from my choice to model actions as commitments
from a low status quo, rather than concessions from a high demand. In traditional reputational
bargaining models, players progressively become sure that, in the absence of concessions, their
opponents are likely to be irrational types. In my model, players develop increasing certainty
over time that, without any commitments, their opponents are more likely to be “soft” com-
promising types.1 Preemptively committing to policy in order to bluff as a hard type can be
extremely costly for a group that is not prepared to accept the status quo as an outcome of their
action. This observation underlines the importance of the assumption to model hardball tactics
as permanent commitments to taking one option off the table entirely. Miscoordination is the
risk that players inevitably take on when they employ such tactics. By contrast, in reputational
bargaining models, miscoordination is never “locked in” – in theory, the door to agreement al-
ways remains open.

Unlike bargaining games that strictly structure the sequence of play, I give both players the
choice of using hardball tactics in continuous time, although the rate at which players receive
opportunities to use these tactics may differ. This allows for dynamic predictions about delay
and preemption to arise that are absent from other bargaining games that seek to analyze take-
it-or-leave-it offers, including veto bargaining games in American politics and ultimatum games
in crisis bargaining (Cameron and McCarty 2004; Fey and Kenkel 2021). Trade-offs between
preemption and caution exist outside of this literature, but are not underpinned by a coordi-
nation motive. Weeds (2002) models strategic delay undertaken by firms seeking to make a
one-time, irreversible R&D investment who face both a preemptive incentive (the winner-takes-
all nature of the patent system) and a caution incentive (uncertainty over the profitability of
the investment). In Weeds’ model, firms are similarly “stuck” once they make an investment,
but the outcome of the investment is unknown due to economic and technological uncertainty.
The motive for delay is thus uncertainty over the profitability of the investment, rather than
uncertainty about the cooperativeness of the rival firm.

Some features of the model reflect recent approaches in economic theory. By modeling
the arrival of commitment opportunities as a Poisson process, I follow Kamada and Sugaya

1It is useful to view the game I develop as a dynamic extension of the Battle of the Sexes, and reputational
bargaining/war of attrition as a dynamic extension of Chicken. While the static versions of these games are
equivalent up to swapping the names of actions, they generate different incentives and patterns of learning in the
dynamic versions.

5



(2020) and related papers in the revision games literature, e.g. Calcagno et al. (2014); Kamada
and Kandori (2020).2 This approach bears similarities to that of Ambrus and Lu (2015), who
develop a continuous-time coalition bargaining game in which players get Poisson-distributed
opportunities to make proposals to one another. These frictions allow for comparative statics
that answer key questions, such as the effect of a higher-leak environment on the length of delay
and incidence of miscoordination.

3 Model

There are two infinitely lived players, a and b, which I refer to as groups. Time t ∈ [0, ∞) is
continuous. There is a status quo (SQ) policy in place at the start of the game, as well as two
alternatives, A and B. It is public knowledge that group a’s preferred policy is A, and group b’s
preferred policy is B. Policy can only be changed once in the game and requires the consent
of both groups. Each group is either a “soft” or “hard” type. Hard types prefer SQ to their
opponent’s preferred alternative, and soft types prefer their opponent’s preferred alternative to
SQ. Let uθ

i (X) denote the utility of a group i = a, b of type θ = s, h for some alternative
X ∈ {A, B, SQ}. Then, for a hard type of group a,

uh
a(A) > uh

a(SQ) > uh
a(B)

For a soft type of group a,
us

a(A) > us
a(B) > us

a(SQ)

Hard and soft types of group b satisfy analogous properties. As I will show that hard types
act largely mechanically, I will omit the s superscript on the utility functions of soft types in
equilibrium analysis.

Groups stochastically receive commitment opportunities at which time they can choose to
render one policy unobtainable. These rate of these arrivals is type-specific. A group of type
θ receives commitment opportunities at rate Poisson(µθ). Arrivals of opportunities are private
information, and remain private if a group chooses to pass. If a group acts on an opportunity
by committing to a policy, its opponent must immediately accept or reject. If the opponent
accepts the policy, the policy is implemented, and if it refuses, the status quo remains in place.
Once a group acts on an opportunity, its decision is permanent and irrevocable. This is what
I refer to as hardball tactics. After the opponent’s decision, the game ends and players receive

2As Kamada and Sugaya observe, this approach is analogous to the technique commonly used in macroeco-
nomics to model uncertainty over future opportunities to change prices originated by Calvo (1983).
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their infinite-horizon utility from the final policy that is implemented. There is no discounting.

A group’s type may be publicly revealed or “leaked” at any point. The stochastic arrival
rate of information leaks is type-dependent: the probability that a group of type θ is leaked is
Poisson(λθ). I assume that µh +λh ≥ µs +λs, that is, the combined average rates at which hard
types are leaked or can commit exceeds that at which soft types are leaked or can commit.3 At
the start of the game, group a holds a prior belief pb ∈ [0, 1] that their opponent b is a hard
type. Analogously, pa is the prior about opponent a held by group b. In the absence of leaks,
groups update their beliefs endogenously based on opponents’ actions. The solution concept is
Perfect Bayesian Equilibrium.

3.1 Discussion of model assumptions

In the initial presentation of the model, I assume symmetry across groups. That is, for θ ∈ {s, h},
I assume pa = pb ≡ p, and uθ

a(A) = uθ
b(B), uθ

a(B) = uθ
b(A), and uθ

a(SQ) = uθ
b(SQ). I also assume

throughout that groups do not discount the future. This allows me to isolate groups’ incentives
to preempt undiluted by the additional impatience generated by discounting. Therefore, if policy
changes at any point, the new policy fully dominates infinite-horizon utility. In the absence of
discounting, it is technically necessary to impose a tie-breaking assumption for situations where
players are indifferent between committing at time t and committing at any time after t. I will
assume throughout that if players are indifferent between committing at t and any time after
t, they will commit at t. If players discount the future by even an infinitesimal amount, they
would prefer to commit at t.

The exposition of the model suggests that if neither group’s preferred reform is passed, the
original status quo will be instated. However, the logic of the model remains unchanged if we
take the status quo to represent a different outcome that is instated if an offer is made and
refused. Indeed, it is the status quo that is instated after an unsuccessful offer that factors
into players’ strategic calculus. Therefore, the model remains identical if SQ is replaced with
a different option instated only if negotiation fails. In some instances, it is plausible to assume
that this is identical to the status quo that players begin with (e.g. when Obamacare remained
in place before and after the unsuccessfully attempted repeal). In others, it is more plausible
to assume this is something else (e.g. civil war, which is arguably more detrimental than a
previously existing alliance).

3The equilibrium characterization in threshold strategies holds when this condition holds with equality, but
not if µs + λs > µh + λh. The utility of this assumption becomes clear after the equilibrium characterization, and
is further addressed in the Discussion.
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The model imposes weak assumptions on preferences. It does not require that players have
single-peaked preferences, although it nests this possibility. As an example, suppose players
have single-peaked preferences and SQ < A < B, that is, B is the most ideologically extreme
far-right reform and A is a more moderate right-leaning reform, but the exact policy locations
of reforms are uncertain. In the absence of any non-ideological dimensions of policy that players
care about, such as quality or public approval, then b must be a soft type. Whether a is a hard
or soft type depends on whether A is closer to B or to SQ. This case where one player’s type is
known and the other’s is unknown is captured by Proposition 2, where the soft group’s type is
revealed at t = 0. However, the ideological location of policies is rarely the sole factor relevant to
groups’ decisions. Policy quality aside, intertemporal and reputational concerns may also induce
players to act against what single-peaked preferences would apparently dictate. For instance, if
b stonewalls today’s policy, they may increase pb and bolster their position in a future higher-
stakes negotiation. While I do not model these idiosyncratic intertemporal concerns explicitly,
I emphasize that their presence in negotiations means that whether a group is “hard” or “soft”
on any given issue is not fully determined by policy preferences alone.

4 Equilibrium

I begin by describing the full information benchmark where types are public. In this benchmark,
groups’ optimal strategies never involve delay. There is no uncertainty to be resolved by delay,
so soft types make offers as soon as they receive an opportunity. Since groups’ types are publicly
known, there is also no efficiency loss from avoidable miscoordination.

Remark 1 (Full information benchmark). If both groups are hard types, the status quo is never
overturned. If both groups are soft types, the first group to receive a commitment opportunity
determines the final policy. If groups are different types, the final policy is the one preferred by
the hard type.

In the full version of the model with incomplete information there is both delay and efficiency
loss. Hard types still have a dominant strategy to propose their preferred alternative as soon
as they receive an opportunity. Since their optimal strategy is independent of their beliefs or
their opponents’ beliefs, they act mechanically. Soft types that know their opponent’s type also
have a dominant strategy to propose a policy as soon as possible. Soft types that have full
information act identically to the full information benchmark: they commit to their preferred
alternative if the opponent is a soft type, and to their opponent’s preferred alternative if the
opponent is a hard type.
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The more interesting problem, which motivates the first proposition, is faced by soft types
who do not know their opponents’ type. To begin the analysis, suppose that neither player’s
type has been leaked up to some time t. I refer to this as a relevant history. At a relevant history,
a soft type (“the decisionmaker”; she) knows that a hard type of her opponent has been trying
to commit from the start. As more time passes without her opponent playing hardball, the
less the decisionmaker believes that her opponent is a hard type. A soft opponent, meanwhile,
is making the same calculation as the decisionmaker, becoming more and more convinced over
time that the decisionmaker is a soft type and therefore safe to preempt. At a certain time, the
decisionmaker’s cost of being preempted by a potentially soft opponent will outweigh the benefit
of giving a potentially hard opponent sufficient time to act first. This result is formalized below:

Proposition 1 (Commitment delay for soft types). Define a relevant history as one where
neither group has committed to a policy and no group’s type has been leaked. Consider the
continuation game at a relevant history. There exists a unique threshold time T ∗ such that if
both groups’ types remain private information, a soft group that receives a opportunity at time t

will commit to its preferred alternative if and only if t > T ∗.

Proposition 1 describes the first time at which a soft type is willing to play hardball. This
time corresponds to a particular posterior belief which equalizes the expected value of delay and
expected value of making a permanent commitment. Mathematically, this threshold belief is
at the core of all equilibrium expressions and encodes many of the factors which tilt players’
behavior towards preemption or delay. For a soft type of player a, this threshold belief is:

P (b is a hard type)
P (b is a soft type) = 1

2
(λh + µh) + µs

(λh + µh)
ua(A) − ua(B)

ua(B) − ua(SQ) ≡ PT (1)

In PT , ua(A)−ua(B)
ua(B)−ua(SQ) describes the strength of a’s preference for policy A over B, relative to B

over SQ. I call this relative desirability. When relative desirability is high, B is less substitutable
for A, and as a result PT is higher. This functions like a marginal rate of substitution: when
relative desirability = 1, A is as preferable to B as B is preferable to SQ. As relative desirability
increases, A becomes much better than B, and as it decreases, A is only slightly better than B.
As relative desirability → ∞, a soft type becomes closer to a hard type. Accordingly, if relative
desirability increases, PT also increases, becoming an easier threshold to cross (as beliefs are
decreasing from the prior) and tilting behavior towards preemption. Note as well that PT de-
pends on the sum of λh and µh. From the perspective of a soft type of a, regardless of whether
its opponent is leaked as a hard type or commits to policy B, the effect is the same: Policy A

is impossible to get.
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Visualization of Proposition 2

t = 0

t̄

T ∗
T

∗(t̄)

Figure 1. T ∗ is when the soft group becomes willing to act if both groups’ types are unknown.
If the soft group’s type is revealed at t̄, it begins committing starting at T

∗, the value of which
is dependent on t̄.

Using the threshold belief PT , we can complete equilibrium characterization. Proposition 1
is only a partial characterization, as it assumes that neither group has had their type revealed.
When a decisionmaker is revealed to be a soft type, she behaves differently in the face of a fully
informed opponent:

Proposition 2 (Delay with asymmetric information). Suppose a soft group’s type is revealed
at time t̄ < T ∗. Then, there exists a unique T

∗(t̄) > T ∗ such that a soft group will commit to
its preferred alternative iff t > T

∗(t̄). Moreover, T
∗(t̄) is decreasing in t̄, with T

∗(T ∗) = T ∗.

Furthermore, T ∗ and T
∗ are given by

T ∗ = max
{

1
λs − (λh + µh) ln

(1 − p

p
PT

)
, 0
}

(2)

T
∗ = max

{
1

λs + µs − (λh + µh)

[
ln
(1 − p

p
PT

)
+ µst̄

]
, 0
}

(3)

This result suggests that we should observe more delay when groups have asymmetric infor-
mation. After group a is revealed to be a soft type, the opponent b wants to commit as soon as
possible regardless of b’s type. From a’s perspective, this means that inaction is no longer infor-
mative about b’s type. This shuts down one channel through which a updates beliefs. Since a is
now learning more slowly, it takes more time for posteriors to converge to PT . Importantly, PT

itself remains unchanged – only the speed of convergence changes. Furthermore, T ∗ = T
∗(T ∗),

that is, if a soft type is leaked exactly at the threshold time T ∗, there is no delay as their beliefs
have already reached the threshold.

What factors impact group behavior? We have already observed that high relative desirabil-
ity induced preemption by making soft types less willing to compromise. Similarly, decreasing
a group’s prior belief that their opponent is hard also incentivizes preemption. Intuitively, this
reduces the distance between prior beliefs and PT . I summarize these two results as follows:
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Corollary 1 (Conditions for no delay). A soft type of group a acts without delay when one or
more of the following are true:

1. The relative desirability of A compared to B is high, i.e. ua(A)−ua(B)
ua(B)−ua(SQ) is high enough.

2. Group a has a strong prior belief that b is a soft type, i.e. 1−p
p is high enough.

Changing the rates of leaks and commitment opportunities is technically and substantively
subtler. These comparative statics speak to questions about the information and technological
environment that players inhabit: What happens when players expect their groups’ internal
discussions to be leaked more frequently owing to an increasingly high-frequency news cycle and
demand for journalistic investigations? What happens when groups’ military and communica-
tions technology improves to the extent that they can more rapidly agree amongst themselves
to deploy force?

The answers are not always mathematically straightforward. Changing rates may affect both
threshold beliefs and the rate of convergence. When these effects move in opposite directions
– for instance, threshold beliefs become easier to reach, but the rate of convergence is slower –
comparative statics can sometimes be non-monotonic. To begin the analysis, note that increas-
ing λh + µh, the effective rate at which hard types screen out, leads to less delay by soft types.
With this straightforward result in hand, I hold constant λh and µh in order to understand the
effects of changing rates that apply to soft types.

Increasing the rate at which soft types are leaked, λs, slows the rate of learning, leading to
more delay. Although it seems counterintuitive that increasing the incidence of leaks makes it
more difficult to learn, the key is that in the absence of any actual leaks, soft types learn on the
basis of the difference λh − λs, in other words, how frequently they should expect a hard type of
their opponent to be leaked relative to a soft type. First suppose this difference is large. Then,
observing no leaks for a long duration of time is strong evidence that the other player is soft.
If this difference is small, then observing no leaks is not very informative, and a soft type must
wait much more time to become confident the opponent is a soft type. In other words, when λs

increases, learning is more difficult, extending delay.

The rate at which soft types receive commitment opportunities, µs, has a more ambiguous
impact on delay, since it can change the rate of learning as well as the beliefs threshold. On one
hand, increasing µs increases PT . In the case where no group has been leaked, this is the only
place in which µs appears in equilibrium delay. Thus, T ∗ – the soft type’s threshold delay in
the no-leak equilibrium – decreases in µs. However, µs has another impact in the case where a

11



soft type has been leaked. To see the result intuitively, recall that after the leak, both types of
opponent pool on actions. Thus, the leaked soft type must now make inferences based on the
difference µh − µs. Similarly to the analysis of λs, increasing µs makes this difference smaller,
and impedes learning.

Whether T
∗ is increasing or decreasing in µs depends on which of these two effects dom-

inates: the “lower bar” effect on PT which incentivizes preemption, or the “slower learning”
effect which incentivizes delay. If the soft type is leaked early, slower learning takes place over
nearly the entire duration of the game, tending to dominate the change to PT . By contrast, if
the soft type is leaked late in the game, the majority of learning about the opponent’s type is
already done before the leak. Slowing the speed of remaining learning has an inconsequential
effect relative to the bump to PT , which is sufficient to reduce delay. In the asymmetric case,
therefore, the comparative static on µs is nonmonotonic.

I summarize these observations below:

Proposition 3 (Comparative statics for delay and rate parameters).

1. T ∗ and T
∗ are increasing in λs, the rate at which soft types are exogenously leaked.

2. T ∗ is decreasing in µs, the rate at which soft types receive commitment opportunities.

3. T
∗ is increasing in µs when t̄ < max

{
T ∗ − λs+µs−(λh+µh)

(µs+(λh+µh))(λs−(λh+µh)) , 0
}

and decreasing in
µs otherwise.

4. T ∗ and T
∗ are decreasing in λh + µh, the rate at which hard types screen out.

This analysis makes clear how changing rates can have counterintuitive consequences. Espe-
cially in the absence of observed arrivals of commitments or leaks, simply knowing the average
rate of arrivals can give players the information they need to deduce their opponent’s willingness
to compromise over time. Observe also that leaks have both direct and indirect effects on behav-
ior. Besides putting the leaked player at a direct disadvantage, they also change the inferences
that the leaked player can make on the basis of its opponent’s behavior. In the asymmetric
setting, the caution that this incentivizes for the leaked player can also give its opponent enough
“slack” to delay as well.

I conclude the equilibrium characterization with a comment regarding uniqueness, which
motivates results that I derive in the asymmetric setting. T ∗ and T

∗ are unique in the space
of threshold strategies, that is, assuming that an uninformed soft type of the opponent is com-
mitting after a single threshold, then the best response is also threshold. Figure 2 plots each
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Figure 2. Example of best response correspondences in a symmetric setting.
Parameters: λs = 1

3 , µs = 1
3 , λh + µh = 1, 1−p

p
= 1

4 , ua(A)−ua(B)
ua(B)−ua(SQ) = ub(B)−ub(A)

ub(A)−ub(SQ) = 1
2

player’s optimal threshold taking the opponent’s threshold time as given. Each player’s best
response, viewed independently, takes a “V” form. In the symmetric setting, the equilibrium
corresponds to a single point of intersection on the 45-degree line where T ∗

a = T ∗
b .

Consider the shape of the best responses. The point of the “V” represents the minimum
possible amount of delay given a particular best response function. The symmetric case, which
I have analyzed thus far, corresponds to the special case where best responses kink in the same
place and therefore intersect there, at the point of both “V”s. Moving along either player’s best
response function away from the kink amounts to increasing delay for both players. I discuss
this further in Section 6, where I also consider comparative statics that vary a parameter for
a particular type of group a without varying it for the same type of group b. In particular,
increasing the rate at which one player is leaked only shifts one best response while holding the
other constant, resulting in both players delaying longer than in the symmetric case.

5 Welfare

I have described players’ propensity to employ or refrain from hardball tactics, and how soft
players adjust their delay in response to exogenous factors. I now turn to how equilibrium
behavior maps onto players’ welfare. Retaining the symmetric setting analyzed thus far, I begin
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by developing the connection between equilibrium strategies and welfare. Consider a soft type
of player a’s infinite horizon expected utility, which corresponds to how well-off they can expect
to be at the start of the game:

(1 − p)
[

ua(A) + ua(B)
2

]
+ (p)

[
P (avoidable miscoordination) ua(SQ)+

(
1 − P (avoidable miscoordination)

)
ua(B)

]
(4)

Avoidable miscoordination embeds soft types’ equilibrium choice of delay. Equilibrium con-
siderations do not appear in the first term, because symmetric soft types delay the exact same
amount of time and receive commitment opportunities at the same rate – hence, the resulting
policy (A or B) is a coin toss. However, equilibrium considerations determine the likelihood that
a soft type commits to hardball tactics before its opponent is revealed as a hard type, triggering
avoidable miscoordination. As such, avoidable miscoordination is the sole strategic component
of ex ante welfare.

Lemma 1 (Commitment delay and avoidable miscoordination). Suppose that uninformed soft
types pass on all opportunities to commit until an arbitrary time T , after which they commit to
their most-preferred alternative as soon as they receive a commitment opportunity. Then, the
probability of avoidable miscoordination is

e(−µh−λh)T µs

µs + µh + λh
(5)

which is decreasing in T .

Lemma 1 observes that avoidable miscoordination is mechanically decreasing in delay. It is
not an equilibrium statement. The equilibrium probability of avoidable miscoordination involves
ex ante expected equilibrium delay. Computing this becomes complex, as it involves both the
likelihood of no leak occurring prior to T ∗, and the likelihood at every instant t̄ that a leak
occurs that will trigger the revised threshold, T

∗(t̄). I relegate the statement to the Appendix
(Equation A19).

Priors and relative desirability have mechanical as well as strategic effects on welfare. While
increasing relative desirability shortens delay (making avoidable miscoordination more likely),
it also mechanically boosts utility in the cases where there is no avoidable miscoordination.
Similarly, increasing p means that avoidable miscoordination is less likely if the opponent is
truly a hard type (increasing welfare), but makes it also more likely a priori that the opponent
could be a hard type (decreasing welfare). Figure 3 illustrates these dynamics. Note that even
in the region where the probability of avoidable miscoordination is flat (due to the fact that
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Figure 3. Effects of changing priors on miscoordination and welfare. Left of the kink, soft
players do not delay at all. Right of the kink, soft players choose positive delay.
Parameter values: λs = 1

3 , µs = 1
3 , λh + µh = 1, ua(A)−ua(B)

ua(B)−ua(SQ) = 1
2

delay is 0), welfare is still falling due to the mechanical effect of the opponent being more likely
to be a hard type.

By comparison, rate parameters only have strategic effects, since they only appear in ex ante
welfare via the probability of avoidable miscoordination. Delay is increasing in λs, so welfare
is increasing in λs. This comparative static is visualized in Figure A1. Stepping back from the
model, the result is far from obvious. Leaks impose a cost upon soft players who delay, and
yet these players are better off when this cost increases! The key intuition is that avoidable
miscoordination is the only conduit between the “leakiness” of the environment and welfare.
When λs is higher, players make fewer mistakes of preemption, and are collectively better off
for it.

The effect of commitment opportunities is mediated by the likelihood of leaks. In short,
higher µs negatively impacts welfare as long as leaks are not too likely. To see why, recall the
effects of µs on delay: While T ∗ was decreasing in µs, T

∗ was decreasing in µs if a player was
leaked late enough. In their ex ante calculation of welfare, players cannot anticipate whether or
not a leak will occur early or late. They can only anticipate how they can react in any cases
that a leak occurs. If µs is low relative to µh, hard types screen out discernably faster, reducing
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Figure 4. Effects of changing µs on miscoordination. Left panel presents the aggregate effect,
which is the probability-weighted sum of the effects in the one-sided and two-sided asymmetric
information cases (panels b and c, respectively).
Parameter values: λs = 1

3 , λh + µh = 1, 1−p
p

= 1
4 , ua(A)−ua(B)

ua(B)−ua(SQ) = 1
2

the incidence of miscoordination. At high values of µs, soft types delay a long time, since it is
difficult to learn on the basis of µh − µs. Miscoordination is most likely at intermediate values
of µs, as depicted in Figure 4 panel (b). When leaks are highly probable, the T

∗ dominates, so
welfare has a “U”-shape in µs. When leaks are rare, the T ∗ case dominates, so welfare simply
decreases in µs (Figure A2).
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Figure 5. Effects of changing λh + µh on the probability of avoidable miscoordination.
As I progressively increase λs across the panels, non-monotonicity in the comparative static
becomes more pronounced.
Parameter values: λh + µh = 1, 1−p

p
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2

The rate at which soft types are leaked also influences the comparative statics on λh + µh,
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the effective rate at which hard types screen out. When hard types screen out quickly, soft types
learn more quickly and delay less. Nonetheless, this reduced delay turns out to backfire when
λs is high. Intuitively, this is driven by rational impatience: the increase in λh + µh leads soft
types to believe that most hard types have probably already screened out and that it is safe to
play hardball against their opponent. While this is a good assumption to make in the limit as
λh + µh → ∞, it does not hold at low levels of λh + µh where a hard type has not necessarily
yet screened out. This effect is compounded when λs is high, causing soft types to fear being
outed to a soft opponent and being put at a disadvantage. When λs is low, the probability of
miscoordination decreases in λh + µh. As λs increases, nonmonotonicity becomes increasingly
pronounced (Figure 5).

Remark 2 (λs = 0 welfare benchmark). When λs = 0, welfare is increasing in λh + µh, and is
decreasing in µs.

These observations highlight how information leaks mediate the effects of commitment op-
portunities by forcing players to hedge against the probability that they will be caught in the
T

∗ case. While higher λs is, all else equal, good for welfare, it also means that players are more
likely to miscoordinate at intermediate values of µs and low-to-intermediate values of λh + µh.
By contrast, when λs is low, players are most likely to miscoordinate when µs is high and λh +µh

is very low – in other words, when soft types can employ hardball tactics frequently and hard
types screen out very slowly.

6 Asymmetric setting

In this section, I generalize the analysis to accommodate player- and type- specific rate pa-
rameters, beliefs, and utilities. This serves two functions. First, it generalizes the equilibrium
statement and provides a clear geometric argument for the uniqueness of the equilibrium in
threshold strategies. Second, it provides theoretical depth for the comparative statics described
in the symmetric case. Comparative statics previously applied the change of one parameter
equally across (the same type of) both players. By disambiguating this effect, I can more clearly
separate the effect of one player- and type-specific change on players’ best responses. This
provides a clearer explanation for the apparently straightforward and ambiguous comparative
statics on information leaks and commitment opportunities, respectively. While the purpose
of this section is primarily theoretical, it equips the model to answer realistic questions. For
instance, a media or legal investigation that aims to leak one political party usually does not
threaten the other. Similarly, groups may have different policy priorities, resulting in different
relative desirability parameters. The equilibrium consequences of such cases become clear in the
asymmetric setting.
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6.1 Equilibrium and uniqueness

I retain the setup from Section 3, while relaxing the symmetry assumptions. I allow uθ
a(X) ̸=

uθ
b(X) for θ ∈ {s, h} and generic policy X, and allow pa ̸= pb. Rate parameters are now specific

to types and players: λs
a ̸= λs

b, λh
a ̸= λh

b , and likewise for µ parameters. I explicitly notate a soft
type of player i’s relative desirability as follows:

RDi := ui(Xi) − ui(Xj)
ui(Xj) − ui(SQ)

where Xi denotes i’s most-preferred good and Xj denotes j’s most-preferred good.4 The only
assumption on parameters that I retain is λi

s + µi
s ≤ λi

h + µi
h. Gameplay proceeds identically to

before. In this setup, there exists a unique threshold equilibrium:

Proposition 4 (Uniqueness of the best response correspondence). Assume that a soft type of
player i = a, b is playing a threshold strategy, that is, conditional upon being at a history in
which no commitment has been made and no groups type has been leaked, there exists T ∗

i such
that i will commit to its preferred alternative if and only if t > T ∗

i . If j uses the threshold time
T ∗

j , then T ∗
i : R+ → R+ is given by

T ∗
i (T ∗

j ) =


max

{
1

λj
s−(λj

h
+µj

h
)−µi

s

[
ln
(

RDi
µj

s

µi
s+µj

s

1−pi
pi

(λj
h

+µj
h

)+µi
s

(λj
h

+µj
h

)

)
− µi

sT ∗
j

]
, 0
}

if Ti < T ∗
j

max
{

1
λj

s+µj
s−(λj

s+µj
s)

[
ln
(

RDi
µj

s

µi
s+µj

s

1−pi
pi

(λj
h

+µj
h

)+µi
s

(λj
h

+µj
h

)

)
+ µj

sT ∗
j

]
, 0
}

if Ti > T ∗
j

(6)

Furthermore, T ∗
i (T ∗

j ) and T ∗
j (T ∗

i ) are continuous and have a unique point of intersection, which
determines optimal delay for each player.

The V-shape of the best response function, shown in Figure 6, suggests why players col-
lectively suffer most in the symmetric case. In the symmetric case, players delayed an equal
amount of time, causing their best responses to intersect on their (identical) kink: T ∗. In the
asymmetric case, best response functions are still piecewise and kink on the 45-degree line, but
may not kink and intersect at the same point. Figure 6 depicts best responses intersecting where
T ∗

a < T ∗
b . This means that b cannot learn from commitment behavior after T ∗

a . Analogously to
the argument for T

∗
> T ∗ in the symmetric case, b’s slower learning translates into longer delay.

4Note that varying relative desirability is equivalent to varying the payoff that players receive in cases where
negotiation fails, since what matters in players’ strategic calculus is the value of the “status quo” that can be
received in the future, not the value of the one received in the past.
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Whenever a soft type of the opponent becomes willing to commit earlier, the decisionmaker
delays longer. The opponent with the earlier threshold, however, does not delay as long as in
symmetric case. They delay more. They have the flexibility to extend delay slightly, reducing
their chances of preempting a hard type mistakenly without overly increasing the chance their
lagging opponent will preempt them. Neither player delays less than in the symmetric case. The
result is particularly stark in cases like this one where only one player’s best response responds
to a change to a parameter. From Proposition 4, we know that pb, b’s prior about a, only
appears in b’s best response. Hence, b’s best response function (in blue) is shifted while a’s (in
red) remains unchanged from the symmetric case depicted in Figure 2.

The asymmetric setting also offers insights to why comparative statics on λs tended to be
simpler than on other rate parameters: Increasing λi

s, the rate at which player i is leaked, shifts
j’s best response without shifting i’s (see Proposition 4). As a result, increasing λi

s must increase
delay for both groups because, like changing one group’s prior, it holds one group’s best response
constant. Returning to the symmetric case, we can see that this effect is only compounded by
increasing both λa

s and λb
s. This shifts both best responses outwards, compounding the delaying

effect on both players.
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(a) Best response correspondences when a is more likely
than b to be a hard type (pb = 0.95 > pa = 0.8)

Figure 6. Best responses in an asymmetric setting. The 45-degree line indicating when
T ∗

a = T ∗
b is marked in light grey. Other parameter values are preserved from Figure 2.
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Unlike λi
s, changing µi

s or λi
h + µi

h shifts best response functions for both players. While
analytic characterizations are more difficult, comparative statics done in simulation confirm
basic intuitions (see Figure A3). Increasing µi

s, the average rate at which a soft type of player
i receives commitment opportunities, leads both players to delay less, with j delaying the least.
Increasing λi

h +µi
h also leads to less delay, especially by player j, who can make faster inferences

about their opponent’s type. These are consistent with the symmetric case, where T ∗ was
decreasing in µs as well as in λh + µh.

7 Discussion

This paper develops a model of how groups with competing interests choose to employ hardball
tactics against each other. I show that groups who are unwilling to compromise on their interests
play hardball quickly, while groups who are willing to compromise delay usage of these tactics.
Because groups commit to rather than concede from their demands, the dynamic learning pro-
cess is reversed from reputational bargaining: As time passes, a group who has yet to act is more
likely in its opponent’s eyes to be a compromising “soft” type than an obstinate “hard” type.
While uncompromising hard types behave mechanically, soft types’ strategic delay is responsive
to the underlying parameters of the game, including the frequency with which groups can act,
prior beliefs about types, and the intensity of preferences. The main source of inefficiency in the
model is the probability of avoidable miscoordination, which arises due to the stochastic and
unobserved arrival of opportunities to play hardball in continuous time. The possibility of avoid-
able miscoordination highlights the importance of credible actions that put an end to potential
compromises, rather than “cheap talk” demands that allow players to take aggressive-seeming
negotiation positions without costly skin in the game. Even if such communication were to be
incorporated into the model, players would remain reluctant to play hardball unless sufficiently
confident in their opponent’s willingness to compromise.

Analysis of uninformed soft types’ decisions coalesce into two major themes. First, any form
of asymmetry, either induced endoegnously through leaks or exogenously through asymmetric
parameter values, impedes one player’s learning, causing them to delay playing hardball for
longer. Second, equilibrium behavior connects to welfare through the risk of avoidable mis-
coordination, which is mollified by factors that prolong delay. Relatedly, while increasing the
likelihood of leaks had analytically simple effects on equilibrium behavior and welfare, the likeli-
hood of leaks mediated the effects of faster or slower commitment opportunities. The root cause
of this is players’ ex ante uncertainty about whether they will find themselves at an informa-
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tional disadvantage mid-game. These comparative statics on information leaks and commitment
opportunities are absent from most bargaining games and games of preemption, and address real-
life questions. For instance, a group is revealed to be willing to compromise, we should expect
that group to both abstain longer from hardball tactics, but also that an impasse is less likely.
If factions are able to have more frequent meetings which translate into commitment opportu-
nities, negotiations may be shorter, but are also more likely to stalemate.

I now briefly revisit a key assumption, namely that λs + µs ≤ λh + µh. This assumption is
necessary to obtain a threshold equilibrium wherein soft types never commit before the thresh-
old and always commit after the threshold. If the assumption is reversed, the logic of soft types’
decision prior to the threshold is unchanged (since hard types still want to commit quickly), but
after the threshold, soft types will screen out faster than hard types. Therefore, if no commit-
ments are observed after the threshold, players think that an opponent who has not committed
is more likely to be a hard type. In short, undoing this assumption means that learning reverses
after the threshold. In order to equalize opponents’ beliefs at the threshold without the as-
sumption, soft types play a mixed strategy between committing and not committing. Since this
does not present a substantial qualitative difference from the results obtained under the original
assumption, I exclude it for analytical clarity.

The model is flexible to a number of extensions, for instance, imposing negotiation deadlines.
Suppose, for example, that there is a known time TD past which, if either group has failed to
make a commitment, the status quo is automatically instated. The effect of this is to add an
additional cost to uninformed soft types’ cost of waiting, corresponding to the probability that a
commitment opportunity will not arrive prior to the deadline (1−e−µs(TD−t) ). If the deadline is
sufficiently early, soft types would be strongly incentivized towards preemption, making learning
difficult (since players of both types act quickly). If it is relatively late, the threshold equilibrium
would be largely unchanged, although it should shift slightly earlier due to the extra weight on
the costs of delay.

Related questions remain open, for instance, that of endogenous information acquisition.
If a group can pay a cost to do “opposition research” by increasing λs or λh of its opponent,
when would it pay this cost? How would this affect each group’s expected payoff? I leave this
to future work expanding on the model. The basic framework advanced in this model is not
limited to the application of factional competition in political institutions. For instance, it could
also be used to model the logic of sales or employment negotiations. In practice, both seller and
buyer must agree to the same contract for negotiations to go forward, with both parties having
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enough leverage to set a price above which they will not buy, or below which they will not
sell.5 Alternatively, in hiring decisions that are made by committee, stakeholders with different
priorities must frequently agree on a single candidate. If one group of stakeholders strongly
prefers candidate a and another strongly prefers candidate b, each faction must decide when to
“pull the trigger” based on their perception of the other side’s willingness to compromise on
their choice.

5This is reminiscent of a passage in Schelling (1956), which employs the example of a house seller and buyer:
“Suppose the buyer could make an irrevocable and enforceable bet with some third party, duly recorded and
certified, according to which he would pay for the house no more than $16,000 (...) The seller can take it or
leave it. This example demonstrates that if the buyer can accept an irrevocable commitment, in a
way that is unambiguously visible to the seller, he can squeeze the range of indeterminacy down
to the point most favorable to him.” (Emphasis added.)
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Online Appendix

A Proofs for equilibrium in the symmetric setting

A.1 Derivation of T ∗, T
∗

Derivation of T ∗. At T ∗, a soft type of group a must be indifferent between committing to its
preferred policy and waiting. (The derivation is analogous for a soft type or group b). Then, a’s
expected utility of committing to A at T ∗, conditional upon neither type being revealed and no
commitments occurring by T ∗, is[

pe(−µh−λh)T ∗]
ua(SQ) +

[
(1 − p)e−λsT ∗]

ua(A) (A1)

To derive the continuation value of waiting at T ∗, consider the possible subsequent events
after a waits. Suppose first that b is hard. Then, two cases are possible: (1) µh arrives, in
which case b commits to B, or λh arrives, in which case a knows that implementing A is not
possible. Either way, a soft type of a prefers B to SQ, so a commits to B as soon as it receives a
commitment opportunity. (2) µs arrives. Assuming that a is playing the proposed equilibrium
strategy, a commits to policy A. However, since b prefers SQ to A, the outcome is SQ. Suppose
now that b is soft. Then, whichever group receives the first commitment opportunity after
T ∗ commits to their preferred policy. Since µs is the same for both players, these occur with
equal probability. Whichever group receives the first commitment opportunity can implement
its preferred policy. Thus, the continuation value of waiting is

[
pe(−µh−λh)T ∗( 1

µs + µh + λh

)](
µsua(SQ) + (µh + λh)ua(B)

)
+
[1 − p

2 e−λsT ∗
](

ua(A) + ua(B)
)

(A2)

Setting (A1) equal to (A2) and rearranging terms, I obtain a’s indifference condition at T ∗:[
pe(−µh−λh)T ∗( µh + λh

µs + µh + λh

)](
ua(B) − ua(SQ)

)
=
[1 − p

2 e−λsT ∗
](

ua(A) − ua(B)
)

(A3)

As the probabilities used in the calculation of both these expressions are technically conditional
probabilities (conditioned upon neither player’s type being revealed before the current time),
we are obliged to divide each probability by the sum total of all the probabilities used in the
calculation of expected utility in order for probabilities to sum to 1. The sum of the associated
probabilities of committing to A is, trivially

pe(−µh−λh)T ∗ + (1 − p)e−λsT ∗
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The sum of the associated probabilities of waiting should be equal this exactly, as they should
theoretically both yield the total probability of no commitments and no preference revelations
before T ∗. Indeed, the sum of all probabilities associated with waiting is

pe(−µh−λh)T ∗ µs + µh + λh

µs + µh + λh
+ (1 − p)e−λsT ∗ µs + µs

µs + µs

=pe(−µh−λh)T ∗ + (1 − p)e−λsT ∗

which confirms that the normalization factors are then equal. We then note that once we set
the expected values equal, each term will be divided by the same normalization factor, so they
will cancel.

Rearrange terms to isolate T ∗:

T ∗ = 1
λs − (λh + µh)

[
ln
(1 − p

2p

(λh + µh) + µs

(λh + µh)
ua(A) − ua(B)

ua(B) − ua(SQ)

)]

Derivation of T
∗. Following similar logic as before, a’s expected utility of committing to

A at time T
∗ is (

pe(−µh−λh)T ∗)
ua(SQ) +

(
(1 − p)e−λsT

∗−µs(T ∗−t̄)
)
ua(A) (A4)

The main difference with the previous derivation is that the opponent is now attempting to
commit during the interval T

∗ − t̄. a’s continuation value of waiting at T
∗ is

[1 − p

2 e−λsT
∗−µs(T ∗−t̄)

](
ua(A) − ua(B)

)
=
[
pe(−µh−λh)T ∗ λh + µh

λh + µh + µs

](
ua(B) − ua(SQ)

)
(A5)

Setting (A4) equal to (A5) and rearranging terms, I obtain a’s indifference condition at T
∗:

[1 − p

2 e−λsT
∗−µs(T ∗−t̄)

](
ua(A) − ua(B)

)
=
[
pe(−µh−λh)T ∗ λh + µh

λh + µh + µs

](
ua(B) − ua(SQ)

)
(A6)

Similarly to before, normalization terms cancel out. Rearrange terms to isolate T
∗
, which is a

linear function of t̄:

T
∗ = 1

λs + µs − (λh + µh)

[
ln
(1 − p

2p

(λh + µh) + µs

(λh + µh)
ua(A) − ua(B)

ua(B) − ua(SQ)

)
+ µst̄

]
(A7)

For completeness, note that while these expression can become negative, players cannot wait
a negative period of time. The player’s threshold time for action is therefore max{0, T ∗}. The
same applies to T

∗.
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A.2 Proof of Propositions 1 and 2

I will show that conditional on no commitments and no leaks, a soft type prefers to wait before
T ∗ and prefers to commit to its preferred policy after T ∗, and that conditional on its type being
revealed at t̄, a soft type prefers to wait before T

∗ and prefers to commit to its preferred policy
after T

∗.

A.2.1 Proposition 1 (T ∗ case)

Claim: When t < T ∗, a strictly prefers to wait.

For all t < T ∗, a soft type of player a’s expected utility of committing to A is:

pe(−µh−λh)tua(SQ) + (1 − p)e−λstua(A) (A8)

I now derive a soft type of group a’s continuation value of waiting at t. I proceed in cases.
The possible cases when b is a hard type are:

1. µh or λh arrives before T ∗. Policy B is implemented. This occurs with probability
pe(−µh−λh)t − pe(−µh−λh)T ∗

2. Either µh or λh arrive before µs but after T ∗. Policy B is implemented. This occurs with
probability pe(−µh−λh)T ∗ λh+µh

λh+µh+µs

3. Neither µh nor λh arrive before T ∗, and µs arrives before µh and λh after T ∗. Policy SQ

is implemented. This occurs with probability pe(−µh−λh)T ∗ µs

λh+µh+µs
.

The possible cases when b is a soft type are:

4. λs arrives for either group at some t̄ before T ∗, and the other group receives a commitment
opportunity before T

∗(t̄), and commits to their preferred policy, which is implemented.
This occurs with probability

(1 − p)e−λst
∫ T ∗

t̃=t
e−2λs(t̃−t)(λs)e−µs[T ∗(t̄)−t̃]dt̃

Note that e−2λs(t̃−t)(λs) is the instantaneous probability of an arrival of λs at any instant
t̃. I then multiply this by the probability that, conditional upon this arrival happening at
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some t̃, µs arrives between t̃ and T
∗(t̃). Evaluating this expression yieldsλs

(1−p)2

p
ua(A)−ua(B)

ua(B)−ua(SQ)
λh+µh+µs

µh+λh

−2λs + µs − µ2
s

λs+µs−λh−µh

 e
λst− µs

λs+µs−λh−µh

[
e

(−2λs−µs− µ2
s

λs+µs−λh−µh
)T ∗

−

e
(−2λs−µs− µ2

s
λs+µs−λh−µh

)t
]

≡ P4

5. λs arrives for either group at some t̄ before T ∗, and the other group does not get a com-
mitment opportunity before T

∗(t̄). After T
∗
, whichever group gets the first commitment

opportunity is able to implement their preferred policy. This occurs with probability

(1 − p)e−λst
∫ T ∗

t̃=t
e−2λs(t̃−t)(λs)

[
1 − e−µs[T ∗(t̄)−t̃]

]
dt̃

Evaluating this expression yields

−(1 − p)
2

[
eλs(t−2T ∗) − e−λst

]
−

λs
(1−p)2

p
ua(A)−ua(B)

ua(B)−ua(SQ)
λh+µh+µs

µh+λh

−2λs + µs − µ2
s

λs+µs−λh−µh

 e
λst− µs

λs+µs−λh−µh

[
e

(−2λs−µs− µ2
s

λs+µs−λh−µh
)T ∗

− e
(−2λs−µs− µ2

s
λs+µs−λh−µh

)t
]

=−(1 − p)
2

[
eλs(t−2T ∗) − e−λst

]
− P4

6. There are no arrivals of λs before T ∗ Whichever group receives the first commitment
opportunity after T ∗ commits to their preferred policy, which is implemented. This occurs
with probability

(1 − p)
2 eλst−2λsT ∗

Therefore, the continuation value of waiting at t is(
pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

λh + µh + µs

)
ua(B) +

(
pe(−µh−λh)T ∗ µs

λh + µh + µs

)
ua(SQ)+

(1 − p)
2 e−λst

(
ua(A) + ua(B)

2

)
(A9)

In order for waiting to be optimal, we must have (A8) < (A9), which simplifies to(
pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

λh + µh + µs

)(
ua(B) − ua(SQ)

)
>

1 − p

2 e−λst
(
ua(A) − ua(B)

)
(A10)
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Because t < T ∗, it holds that

pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

λh + µh + µs
> pe(−µh−λh)t − pe(−µh−λh)t µs

λh + µh + µs

= pe(−µh−λh)t µh + λh

λh + µh + µs

It must also be that(
pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

λh + µh + µs

)(
ua(B) − ua(SQ)

)

>

(
pe(−µh−λh)t µh + λh

λh + µh + µs

)(
ua(B) − ua(SQ)

)
Therefore, it suffices to prove that(

pe(−µh−λh)t µh + λh

λh + µh + µs

)(
ua(B) − ua(SQ)

)
>

(
1 − p

2 e−λst

)(
ua(A) − ua(B)

)
(A11)

Recall the indifference condition for T ∗ derived earlier:(
pe(−µh−λh)T ∗ µh + λh

µs + µh + λh

)(
ua(B) − ua(SQ)

)
=
(

1 − p

2 e−λsT ∗
)(

ua(A) − ua(B)
)

(A3)

Notice that [
pe(−µh−λh)t µh+λh

λh+µh+µs

](
ua(B) − ua(SQ)

)
[

1−p
2 e−λst

](
ua(A) − ua(B)

)
=

[
pe(−µh−λh)T ∗

(
µh+λh

µs+µh+λh

)](
ua(B) − ua(SQ)

)
[

1−p
2 e−λsT ∗

](
ua(A) − ua(B)

) · e(−µh−λh+λs)(t−T ∗)

Consider the factor at the end of the expression, e(−µh−λh+λs)(t−T ∗). Since (−µh − λh + λs) < 0
and (t − T ∗) < 0, we have (−µh − λh + λs)(t − T ∗) > 0 and therefore e(−µh−λh+λs)(t−T ∗) > 1.
Therefore the left-hand side of (A11) is greater than the right-hand side and the inequality is
true. This concludes the proof that when t < T ∗, a strictly prefers to wait.

Claim: When t > T ∗, a strictly prefers to commit to A.

Let ϵ > 0. At time T ∗ + ϵ, a soft type of player a’s expected utility of committing to A

is [
pe(T ∗+ϵ)(−µh−λh)

]
ua(SQ) +

[
(1 − p)e−µsϵ−λs(T ∗+ϵ)

]
ua(A) (A12)

I now derive a soft type of group a’s continuation value of waiting at T ∗ + ϵ. I proceed in
cases:
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1. b is a hard type. µh or λh arrives first. B is implemented. This occurs with probability
pe(−µh−λh)(T ∗+ϵ)

(
λh+µh

µh+λh+µs

)
2. b is a hard type. µs arrives first. SQ remains in place. This occurs with probability

pe(−µh−λh)(T ∗+ϵ)
(

µs

µh+λh+µs

)
3. b is a soft type. In this case, the first player to get a commitment opportunity after T ∗ + ϵ

is able to implement their preferred policy. Either A or B is implemented, each occurs
with probability (1−p)

2 e(−λs−µs)(T ∗+ϵ)−µs t̄

Committing to A is preferable to waiting if[
pe(−µh−λh)(T ∗+ϵ)

( µh + λh

µs + µh + λh

)](
ua(B) − ua(SQ)

)
<

[1 − p

2 e−µsϵ−λs(T ∗+ϵ)
](

ua(A) − ua(B)
)

(A13)
Recall equation A3 that describes indifference at T ∗:[

pe(−µh−λh)T ∗( µh + λh

µs + µh + λh

)](
ua(B) − ua(SQ)

)
=
[1 − p

2 e−λsT ∗
](

ua(A) − ua(B)
)

Note that

pe(−µh−λh)(T ∗+ϵ) µh+λh
µs+µh+λh

(
ua(B) − ua(SQ)

)
1−p

2 e
−µsϵ−λs(T ∗+ϵ)

(
ua(A)−ua(B)

)(
ua(A) − ua(B)

)
=

pe(−µh−λh)T ∗
(

µh+λh
µs+µh+λh

)(
ua(B) − ua(SQ)

)
1−p

2 e−λsT ∗
(
ua(A) − ua(B)

) · e(µs+λs−(λh+µh))ϵ

By assumption that λs + µs < λh + µh, we have e(µs+λs−(λh+µh))ϵ < 1. Therefore inequality
(A13) holds. This concludes the proof that when t > T ∗, a strictly prefers to commit to A.

A.2.2 Proposition 2 ( T
∗ case)

Claim: Suppose a’s type was revealed at some time t̄. Then a strictly prefers to wait
at any t < T

∗.

Let t > t̄. a’s expected utility of committing to A at time t is

(1 − p)e−µs(t−t̄)−λstua(A) + pe(−µh−λh)tua(SQ)

I now derive a soft type of group a’s continuation value of waiting at t.
If b is a hard type,
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1. µh or λh arrives before T
∗(t̄). B is implemented. This occurs with probability pe(−µh−λh)t−

pe(−µh−λh)T ∗(t̄)

2. µh or λh do not arrive between t and T
∗(t̄), but arrive before µs after T

∗(t̄). B is imple-
mented. This occurs with probability pe(−µh−λh)(T ∗(t̄) µh+λh

µh+λh+µs

3. µh or λh do not arrive between t and T
∗(t̄), and µs arrives first after T

∗(t̄). SQ remains
in place. This occurs with probability pe(−µh−λh)(T ∗(t̄)) µs

µh+λh+µs

If b is a soft type,

1. µs arrives for b between t̄ and T
∗(t̄). B is implemented. This occurs with probability

(1 − p)e−µs(t−t̄)−λst
∫ T

∗

t̃=t
e−λs(t̃−t)−µs(t̃−t)(µs)dt̃

=(1 − p)eµs t̄ µs

−µs − λs

[
e(−λs−µs)T ∗

− e(−λs−µs)t
]

2. λs arrives for b before T
∗. Both groups are fully informed, and the first that receives a

commitment opportunity implements their preferred policy. Either A or B is implemented.
Each sub-case occurs with probability

(1 − p)e−µs(t−t̄)−λst
∫ T

∗

t̃=t
e−λs(t̃−t)−µs(t̃−t)(λs)dt̃

=(1 − p)eµs t̄ λs

−µs − λs

[
e(−λs−µs)T ∗

− e(−λs−µs)t
]

3. Neither µs nor λs arrive for b before T
∗. The first group that receives a commitment

opportunity implements their preferred policy. Either A or B is implemented. Each sub-
case occurs with probability

1 − p

2 e−µs(t−t̄)−λste−λs(T ∗−t)−µs(T −1−t)

= 1 − p

2 e−λsT
∗−µs(T ∗−t̄)

Waiting is preferable to committing to A if[
pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

µh + λh + µs

]
(ua(B) − ua(SQ))

+ (1 − p)e−λsT
∗−µs(T ∗−t̄)

(
ua(A) + ua(B)

2 + λs(ua(A) + ua(B)) + µsua(B)
−λs − µs

)
(A14)

>(1 − p)e−λst−µs(t−t̄)
[
ua(A) +

λs
(
ua(A) + ua(B)

)
+ µsua(B)

−λs − µs

]
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Which holds if the following holds:[
pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

µh + λh + µs

]
(ua(B) − ua(SQ))

+ (1 − p)e−λsT
∗−µs(T ∗−t̄)

(
ua(A) + ua(B)

2 + λs(ua(A) + ua(B)) + µsua(B)
−λs − µs

)
(A15)

>(1 − p)e−λsT
∗−µs(T ∗−t̄)

[
ua(A) +

λs
(
ua(A) + ua(B)

)
+ µsua(B)

−λs − µs

]
Which simplifies to[1 − p

2 e−λsT
∗−µs(T ∗−t̄)

](
ua(A) − ua(B)

)
<

[
pe(−µh−λh)t − pe(−µh−λh)T ∗ µs

µh + λh + µs

]
(ua(B) − ua(SQ))

(A16)

Note that the right-hand side is greater than[
pe(−µh−λh)T ∗

− pe(−µh−λh)T ∗ µs

µh + λh + µs

]
(ua(B) − ua(SQ))

=
[
pe(−µh−λh)T ∗ λh + µh

λh + µh + µs

](
ua(B) − ua(SQ)

)
which is the right-hand side of the following equation, which was the condition for a to be
indifferent at T

∗ :[1 − p

2 e−λsT
∗−µs(T ∗−t̄)

](
ua(A) − ua(B)

)
=
[
pe(−µh−λh)T ∗ λh + µh

λh + µh + µs

](
ua(B) − ua(SQ)

)
(A6)

Since the left-hand side of (A16) is identical to that of equation A6, we must have that the
inequality must be true. Thus, a strictly prefers to wait at any t < T

∗.

Claim: Suppose a’s type was revealed at some time t̄. Then a strictly prefers to
commit to A at any t > T

∗
.

Let ϵ > 0. a’s expected utility of committing to A is

pe(−µh−λh)(T ∗+ϵ)ua(SQ) + (1 − p)e(−λs−µs)(T ∗+ϵ)−µs t̄ua(A)

I now derive a soft type of group a’s continuation value of waiting at T
∗ + ϵ. I proceed in cases:

1. b is a hard type. µh or λh arrives before T
∗. Policy B is implemented. This occurs with

probability pe(−µh−λh)(T ∗+ϵ)
(

µh+λh
µh+λh+µs

)
2. b is a hard type. Neither µh nor λh arrive before T

∗, and µs arrives before µh and λh after
T

∗
. SQ remains in place. This occurs with probability pe(−µh−λh)(T ∗+ϵ)

(
µs

µh+λh+µs

)
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3. b is a soft type. Then the first player to receive a commitment opportunity after T
∗ + ϵ

is able to implement their preferred alternative. Either A or B is implemented. The
probability of each sub-case is (1−p)

2 e(−λs−µs)(T ∗+ϵ)−µs t̄

a prefers to commit to A at any T
∗ + ϵ if the following inequality holds:[1 − p

2 e(−λs−µs)(T ∗+ϵ)−µs t̄
](

u(A) − u(B)
)

>

[
pe(−µh−λh)(T ∗+ϵ) µh + λh

µh + λh + µs

](
u(B) − u(SQ)

)
Recall the condition for a to be indifferent at T

∗ (equation A6) was:[1 − p

2 e−λsT
∗−µs(T ∗−t̄)

](
ua(A) − ua(B)

)
=
[
pe(−µh−λh)T ∗ λh + µh

λh + µh + µs

](
ua(B) − ua(SQ)

)
Note that [

pe(−µh−λh)(T ∗+ϵ) µh+λh
µh+λh+µs

](
u(B) − u(SQ)

)
[

1−p
2 e(−λs−µs)(T ∗+ϵ)−µs t̄

](
u(A) − u(B)

)

=

[
pe(−µh−λh)T ∗

λh+µh
λh+µh+µs

](
u(B) − u(SQ)

)
[

1−p
2 e−λsT

∗−µs(T ∗−t̄)
](

u(A) − u(B)
) · e(λs+µs−(λh+µh))ϵ

By assumption that λh+µh > λs+µs, we have that e(λs+µs−(λh+µh))ϵ and therefore the inequality
holds. This concludes the proof that a strictly prefers to commit to A at any t > T

∗.
Proof of Corollary 1 (conditions for no delay). As either ua(A)−ua(B)

ua(B)−ua(SQ) → ∞ or
1−p

p → infty, we must have that 1−p
p PT → ∞, and log ∞ = ∞. As this is multiplied by a

negative number in both delay terms, and delay must be nonnegative, delay → 0.

A.3 Proofs of comparative statics on rates (Proposition 3)

λs µs µh + λh

PT . (+) (−)
T ∗ (+) (−) (−)
T

∗ (+) (+/−) (−)

Table A1. Summary of comparative statics on λs, µs, and λs + λh

A.3.1 PT

Claim: PT is decreasing in λh + µh.
∂PT

∂λh + µh
= 1

2
u(A) − u(B)

u(B) − u(SQ)
−µs

(λh + µh)2
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The last term is negative and is multiplied by positive terms, so the derivative is negative.

Claim: PT is increasing in µs.

∂PT

∂µs
= 1

2
u(A) − u(B)

u(B) − u(SQ)
1

λh + µh

All terms are positive.

A.3.2 T ∗

Claim: T ∗ is decreasing in λh + µh.

∂T ∗

∂λh + µh
= 1

λh + µh(λs − (λh + µh)) + 1
(λs − (λh + µh))2 ln

(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)
Recall that the condition for T ∗ ≥ 0 is

ln
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)
≤ 0

Furthermore, since λh + µh > λs, the first term is negative. The derivative is the sum of two
negative expressions and is negative.

Claim: T ∗ is decreasing in µs.

∂T ∗

∂µs
= 1

(λs − (λh + µh)(µs + λh + µh)

(λs −(λh +µh)) is negative and (µs +λh +µh) is positive, so the sign of the derivative is negative.

Claim: T ∗ is increasing in λs.

∂T ∗

∂λs
= −1

(λs − H)2 ln
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

(λh + µh) + µs

(λh + µh)

)
This is the product of two negative terms, so it is positive.

A.3.3 T
∗

Claim: T
∗ is decreasing in λh + µh.

∂T
∗

∂λh + µh
= 1

(λs + µs − (λh + µh))2

[
ln
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)
+ µst̄

]
+ 1

(µs + λs − (λh + µh))(λh + µh)
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Because T
∗ ≥ 0, we must have

[
ln
(

1−p
2p

u(A)−u(B)
u(B)−u(SQ)

λh+µh+µs

λh+µh

)
+ µst̄

]
< 0, we have the first

term is negative. By the assumption that λh + µh > λs + µs, the second term is negative.
Therefore, this derivative is the sum of two negative terms, so it is negative.

Claim: When t̄ is sufficiently low, T
∗ is increasing in µs .

∂T
∗

∂µs
= −1

(λs + µs − (λh + µh))2

[
ln
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

(λh + µh) + µs

(λh + µh)

)
+ µst̄

]
+ 1

λs + µs − (λh + µh)

( 1
µs + (λh + µh) + t̄

)
This is positive if

t̄ < T ∗ − λs + µs − (λh + µh)
(µs + (λh + µh))(λs − (λh + µh))

Claim: T
∗ is increasing in λs.

∂T
∗

∂λs
= −1

(λs + µs − H)2

[
ln
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

H + µs

H

)
+ µst̄

]

Because T
∗ ≥ 0, we must have

[
ln
(

1−p
2p

u(A)−u(B)
u(B)−u(SQ)

H+µs

H

)
+ µst̄

]
< 0. Thus this is the product

of two negative terms, so it must be positive.

B Proofs for welfare in the symmetric setting

B.1 Derivation of the probability of avoidable miscoordination

Recall that avoidable miscoordination arises when, conditional on one group being a hard type
and one group being a soft type, the soft type makes the first commitment to its preferred
alternative. This arises two ways: Firstly, the game progresses to T ∗ with no arrivals of λs, λh

or µh. Secondly, the soft type is revealed at some time t̄ and the game proceeds to T ∗(t̄) with
no arrivals of λh or µh. In either case, µs arrives first after the relevant threshold is passed.

The probability of the first case arising is

e(−µh−λh−λs)T ∗ µs

µh + λh + µs

Plugging in the T ∗ derived earlier, this equals

µs

µh + λh + µs

(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)−λs−λh−µh
λs−λh−µh
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This, however, does not account for possibility that T ∗ = 0. To include this possibility, the
probability of avoidable miscoordination in the T ∗ case is

µs

µh+λh+µs

(
1−p
2p

u(A)−u(B)
u(B)−u(SQ)

λh+µh+µs

λh+µh

)λs+λh+µh
λh+µh−λs

if T ∗ > 0

µs

µh+λh+µs
if T ∗ = 0

(A17)

The probability of avoidable miscoordination in the T
∗ case is more complex, since T

∗ is
not a fixed threshold, but a function of the time the soft type was leaked, t̄. The probability of
avoidable miscoordination in this case is given by∫ T ∗

t̃=0
e(−µh−λh−λs)t̃(λs)e(−µh−λh)(T ∗(t̃)−t̃) µs

µh + λh + λs
dt̃

Evaluating the integral yields, after simplification,

µs

λh + µh + µs

λs(λh + µh − λs − µs)
µs(µh + λh) − λs(λh + µh − λs − µs)

[
(A18)

(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)λs+λh+µh
λh+µh−λs

−
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

) (µh+λh)
λh+µh−λs−µs

]

Therefore, the probability of avoidable miscoordination is, conditional on T ∗ > 0,

µs

λh + µh + µs

[(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)λs+λh+µh
λh+µh−λs

+ λs(λh + µh − λs − µs)
µs(µh + λh) − λs(λh + µh − λs − µs)

((1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)λs+λh+µh
λh+µh−λs

−
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

) λh+µh
λh+µh−λs−µs

)]
(A19)

and conditional on T ∗ = 0,

µs

λh + µh + µs

[
1

+ λs(λh + µh − λs − µs)
µs(µh + λh) − λs(λh + µh − λs − µs)

((1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

)λs+λh+µh
λh+µh−λs

−
(1 − p

2p

u(A) − u(B)
u(B) − u(SQ)

λh + µh + µs

λh + µh

) λh+µh
λh+µh−λs−µs

)]
(A20)

B.2 Proofs of comparative statics

Claim: The probability of avoidable miscoordination is increasing in (1−p), u(A)−u(B)
u(B)−u(SQ) .

Recall that increasing either of these terms decreased the duration of delay by an uninformed
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soft player. Since these terms only factor into the probability of avoidable miscoordination
through the expressions for delay, and I have previously shown that the probability of avoidable
miscoordination is decreasing in delay, the probability of avoidable miscoordination must be
increasing in either of these factors.

Claim: The probability of avoidable miscoordination is decreasing in λs.
Fix λ0 > 0, λ′ > λs, and λh > λ′. Consider the equilibrium strategy played by soft types when
λ0 is the true rate of type revelation for soft types; denote by T ∗ and T

∗ the time thresholds
that correspond to this equilibrium strategy as previously defined. We have already shown that
these thresholds are increasing in the rate of type revelation for soft types. Therefore, we know
that the equilibrium strategy played by soft types when λ′ is the rate of information revelation
involves time thresholds T ′, T

′ which are higher than T ∗, T
∗, respectively.

Suppose we change the value of λs perceived by both players from λ0 to λ′ without changing
the actual model value of λs. A hard type or a soft type who knows their opponent’s type do not
change their behavior. However, an uninformed soft type will choose to delay longer (T ∗ and T

∗

increase.) The interval of time [T ∗, T ′] provides an additional period during which types may
be revealed (at the true rates). Therefore, this directly decreases the probability of avoidable
negotiation failure by making it more likely that the hard type is revealed. It also indirectly de-
creases the probability of avoidable negotiation failure: suppose that during [T ∗, T ′], the λ0-rate
process arrives. This causes an uninformed soft type to postpone further to T

′
> T

∗. During
this additional interval of delay [T ∗

, T
′], λh could arrive, which would render miscoordination

impossible.

Now suppose we change the value of λs in the underlying model from λ0 to λ′, but players
still believe that λ0 is the true rate. This does not change the value of T ∗, but makes it more
likely that the soft type will be revealed before T ∗. This furthermore makes it more likely that
λh will arrive during [T ∗, T

∗]. Therefore, this also indirectly decreases the probability of avoid-
able negotiation failure.

Now suppose we change both the perceived and true model value of λs from λ0 to λ′. There
a higher probability that the soft type could be revealed during [0, T ∗]. Furthermore, there are
histories after T ∗ during which the soft type would have started committing to his preferred
alternative, but is now delaying until the new threshold T ′. During [T ∗, T ′], there is also some
likelihood that λh will arrive, which would rule out miscoordination, or that λ′ will arrive, which
will induce further delay until T

′, during which interval of delay λh could arrive and rule out
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miscoordination. All of these effects move in the direction of reducing the probability of avoid-
able miscoordination.

Claim: In the T ∗ case, the probability of avoidable miscoordination is increasing
in µs.
Recall that the probability of avoidable miscoordination in the T ∗ case given in equation A17
was: 

µs

µh+λh+µs

(
1−p
2p

u(A)−u(B)
u(B)−u(SQ)

λh+µh+µs

λh+µh

)λs+λh+µh
λh+µh−λs

if T ∗ > 0

µs

µh+λh+µs
if T ∗ = 0

(A17)

Consider the second case. Differentiating with respect to µs yields µh+λh
(µh+λh+µs)2 which is

clearly positive. Now consider the first case. The exponentiated term is also increasing in µs,
since λh+µh+µs

λh+µh
is increasing in µs and all of the other terms are positive and constant in µ.

Therefore the probability of avoidable miscoordination is increasing in µ in the T ∗ case.

Proof of Remark 2.
The claim that when λs = 0, the probability of avoidable miscoordination is increasing in µs

is essentially already proven. When λs = 0, the probability of entering the T
∗ case is 0 and so the

proof follows from the result that in the T ∗ case, the probability of avoidable miscoordination
is increasing in µs.

I next address the claim that when λs = 0, the probability of avoidable miscoordination is
decreasing in λh + µh. Note first that µs

λh+µh+µs
is decreasing in λh + µh, that 1−p

2p
u(A)−u(B)

u(B)−u(SQ)

is constant in λh + µh, that λh+µh+µs

λh+µh
is increasing in λh + µh, and λs+λh+µh

λh+µh−λs
is decreasing in

λh + µh. Therefore, as long as we can prove that

(
λh + µh + µs

λh + µh

)λs+λh+µh
λh+µh−λs

is decreasing in λh + µh, then we are done. For ease of notation, I let Λ ≡ λh + µh for the rest
of the proof. Differentiating the above expression with respect to Λ yields:

(Λ + µs

Λ

)λs+Λ
Λ−λs

(
−2λs

(Λ − λs)2 log
(Λ + µs

Λ

)
+
(

λs + Λ
Λ − λs

−µs

Λ2
Λ

Λ + µs

))

All terms are positive except −2λs
(Λ−λs)2 and −µs

Λ2 . Therefore the sign of the derivative is negative.
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C Proofs for equilibrium in the asymmetric setting

C.1 Derivation of the asymmetric equilibrium

I show the derivation of the best response for group a (it is symmetric for b). I first consider
the case that both players are equally uninformed and no commitment have been observed by
the threshold time. I retain the notation of Λi ≡ λi

h + µi
h. Taking the opponent’s optimal choice

of delay T ∗
b as given, T ∗

a is either before or after T ∗
b (the case of equality is addressed in the

symmetric derivation). T ∗
a (T ∗

b ) < T ∗
b (T ∗

a ) occurs when T ∗
b > Ka, where Ka is the value in the

domain that correspond to kinks in each player’s best response. The case when best responses
cross on the kinks is already done in the symmetric setting.

Case 1: T ∗
a (T ∗

b )|T ∗
b > Ka. Then, u(commit to A at T ∗

a ) = (1−pa)e−λb
sT ∗

a ua(A)+pae−ΛbT ∗
a ua(SQ),

and the continuation of waiting is the sum of the following cases:

1. b is a soft type, and a gets an arrival of µa
s in the interval [T ∗

a , T ∗
b ]. A is implemented. This

occurs with probability (1 − pa)e−λs
bT ∗

a − (1 − pa)e(µa
s −λb

s)T ∗
a −µa

s T ∗
b

2. b is a soft type, and a doesn’t get an arrival of µa
s in the interval [T ∗

a , T ∗
b ]. Either A or B

is implemented. The probability A is implemented is (1 − pa)e(µa
s −λb

s)T ∗
a −µa

s T ∗
b

µa
s

µa
s +µb

s
. The

probability B is implemented is (1 − pa)e(µa
s −λb

s)T ∗
a −µa

s T ∗
b

µb
s

µa
s +µb

s
.

3. b is a hard type. Either SQ or B is implemented. The probability SQ is implemented is
(pa)e−ΛbT ∗

a
µa

s

Λb+µa
s
. The probability B is implemented is (pa)e−ΛbT ∗

a Λb

Λb+µa
s

Setting equal to a’s utility of committing to A immediately, I obtain the threshold:

T ∗
a (T ∗

b )|T ∗
b > Ka = 1

λb
s − Λb − µa

s

(
ln
[

ua(A) − ua(B)
ua(B) − ua(SQ)

µb
s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
− µa

sT ∗
b

)
(A21)

Case 2: T ∗
a (T ∗

b )|T ∗
b < Ka. Then, u(commit to A at T ∗

a ) =
(
(1 − pa)e(µb

s−λb
s)T ∗

a +µb
sT ∗

b
)
ua(A) +(

pae−ΛbT ∗
a
)
ua(SQ), and the continuation value of waiting is the sum of the following cases:

1. b is a soft type. The first player to receive a commitment opportunity after T ∗
a implements

their preferred policy. The probability that A is implemented is (1−pa)e(µb
s−λb

s)T ∗
a +µb

sT ∗
b

µa
s

µb
s+µa

s
.

The probability that B is implemented is (1 − pa)e(µb
s−λb

s)T ∗
a +µb

sT ∗
b

µb
s

µb
s+µa

s

2. b is a hard type. If a receives the first commitment opportunity, SQ stays in place. If b

receives the first commitment, B is implemented. The probability that SQ is implemented
is pae−ΛbT ∗

a
µa

s

Λb+µa
s
. The probability that B is implemented is pae−ΛbT ∗

a
µa

s

Λb+µa
s

Λb

Λb+µa
s
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Setting equal to a’s utility of committing to A immediately, I obtain the threshold:

T ∗
a (T ∗

b )|T ∗
b < Ka = 1

λb
s + µb

s − Λb

(
ln
[

ua(A) − ua(B)
ua(B) − ua(SQ)

µb
s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
+ µb

sT ∗
b

)
(A22)

Corresponding expressions for T ∗
b can be derived symmetrically:

T ∗
b (T ∗

a )|T ∗
a < Kb = 1

λa
s + µa

s − Λa

(
ln
[

ub(B) − ub(A)
ub(A) − ub(SQ)

µa
s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
+ µa

sT ∗
a

)
(A23)

T ∗
b (T ∗

a )|T ∗
a > Kb = 1

λa
s − Λa − µb

s

(
ln
[

ub(B) − ub(A)
ub(A) − ub(SQ)

µa
s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
− µb

sT ∗
a

)
(A24)

Ka and Kb are given by:

Ka := µa
s + µb

s

µa
s(λa

s − Λa − µb
s) + µb

s(λa
s + µa

s − Λa) ln
[

ub(B) − ub(A)
ub(A) − ub(SQ)

µa
s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
(A25)

Kb := µb
s + µa

s

µb
s(λb

s − Λb − µa
s) + µa

s(λb
s + µb

s − Λb) ln
[

ua(A) − ua(B)
ua(B) − ua(SQ)

µb
s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
(A26)

Plugging each best correspondence function into the opponent’s best correspondence function
(for the same condition) yields closed-form expressions for equilibrium delay times:
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T ∗
a |T ∗

a < T ∗
b = λa

s + µa
s − Λa

(λa
s + µa

s − Λa)(λb
s − Λb − µa

s) + (µa
s)2 ln

[
ua(A) − ua(B)

ua(B) − ua(SQ)
µb

s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
− µa

s

(λa
s + µa

s − Λa)(λb
s − Λb − µa

s) + (µa
s)2 ln

[
ub(B) − ub(A)

ub(A) − ub(SQ)
µa

s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
(A27)

T ∗
b |T ∗

a < T ∗
b = µa

s

(λa
s + µa

s − Λa)(λb
s − Λb − µa

s) + (µa
s)2 ln

[
ua(A) − ua(B)

ua(B) − ua(SQ)
µb

s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
+ λa

s + µa
s − Λa

(λa
s + µa

s − Λa)(λb
s − Λb − µa

s) + (µa
s)2 ln

[
ub(B) − ub(A)

ub(A) − ub(SQ)
µa

s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
(A28)

T ∗
a |T ∗

b < T ∗
a = µb

s

(λa
s − Λa − µb

s)(λb
s + µb

s − Λb) + (µb
s)2 ln

[
ub(B) − ub(A)

ub(A) − ub(SQ)
µa

s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
+ λa

s − Λa − µb
s

(λa
s − Λa − µb

s)(λb
s + µb

s − Λb) + (µb
s)2 ln

[
ua(A) − ua(B)

ua(B) − ua(SQ)
µb

s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
(A29)

T ∗
b |T ∗

b < T ∗
a = λb

s + µb
s − Λb

(λa
s − Λa − µb

s)(λb
s + µb

s − Λb) + (µb
s)2 ln

[
ub(B) − ub(A)

ub(A) − ub(SQ)
µa

s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
− µb

s

(λa
s − Λa − µb

s)(λb
s + µb

s − Λb) + (µb
s)2 ln

[
ua(A) − ua(B)

ua(B) − ua(SQ)
µb

s

µa
s + µb

s

1 − pa

pa

Λb + µa
s

Λb

]
(A30)

C.2 Proof of Proposition 4

Claim: T ∗
a (T ∗

b ) and T ∗
b (T ∗

a ) can only intersect once.

The 45 degree line T ∗
a = T ∗

b divides the best response space into two regions: Ta < Tb

and Ta > Tb. The following lemma describes bounds on the behavior of both best response
correspondences in each region, which will then be used to prove the statement of uniqueness.

Lemma A1. T ∗
i (T ∗

j ) kinks when Ti = Tj and has linear subfunctions. When Ti < Tj, the slope
of T ∗

i (T ∗
j ) ∈ (0, 1). When Ti > Tj , the slope of T ∗

i (T ∗
j ) ∈ (−∞, 0).

Proof. Note that for either player i, the functions that describe i’s best response Ti(Tj) condi-
tional upon Ti > Tj and conditional upon Ti < Tj are both linear in Tj .
The slope of i’s best response Ti(Tj) conditional upon Tj < Ti is

µi
s

λj
s − Hj − µi

s

= −µi
s

Hj − λj
s + µi

s

Since Hj > λj
s and µi

s > 0, this must be in (−∞, 0).
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The slope of i’s best response T ∗
i (Tj) conditional upon T ∗

i < Tj is

−µj
s

λj
s + µj

s − Hj
= µj

s

Hj − (λj
s + µj

s)

Again, since Hj > λj
s + µj

s, this is bounded in (0, 1).

Because both intervals are open, Ti cannot have zero slope in either region, so its slope must
change at Ti = Tj . At the identity, the value of both functions equals Ti(Kj), thus there must
be a kink, rather than a discontinuity. This proves the Lemma.

Case 1. Suppose players’ best response functions intersect on the 45 degree line. This must
mean that the functions cross exactly on each of their kinks. Then, we can only have multiple
crossings if T ∗

i (T ∗
j ) has the same slope as T ∗

j (T ∗
i ) in one or both of the regions. However, when

T ∗
i > T ∗

j , the slope of T ∗
i (T ∗

j ) ∈ (−∞, 0). The slope of T ∗
j (T ∗

i ) is µi

Hj−(λi+µi) . Inverting to

represent Ti as a function of Tj , we have Hj−(λi+µi)
µi

which is between (1, ∞). This interval is
disjoint from (−∞, 0), so there is no intersection. Similar reasoning applies when T ∗

i < T ∗
j : The

slope of T ∗
i (T ∗

j ) is constrained between (0, 1). The slope of T ∗
j (T ∗

i ), inverted to represent Ti as
a function of Tj , is constrained between (−∞, −1). Conditional upon intersection at Ti = Tj ,
there cannot be an intersection in this region.

Case 2. Suppose that the players’ best responses kink in different places. Assume WLOG
Ki < Kj . Note that the order of the kinks implies that T ∗

i (Kj) < T ∗
j (Kj) = Kj . We will

show that the functions must cross once in the region where T ∗
i < T ∗

j . In this region, the slope
of T ∗

i (T ∗
j ) is in (0, 1), while the slope of T ∗

j (T ∗
i ), inverted to be a function of T ∗

j , is negative.
Given that T ∗

i (T ∗
j ) is below T ∗

j (T ∗
i ) at Kj , T ∗

i (T ∗
j ) is an increasing function (that stays below

the 45-degree line), and the inverted T ∗
j (T ∗

i ) is a decreasing function, they must intersect.

To see why they cannot cross in the region where T ∗
j > T ∗

i , note that T ∗
i (Kj) < T ∗

j (Kj) = Kj .
In this region, T ∗

j (T ∗
i ) (as a function of T ∗

j ) has an positive while T ∗
i (T ∗

j ) has negative slope.
Furthermore, T ∗

i (T ∗
j ) must intersect with Ki < Kj . Therefore they must diverge in this region.

C.3 Supplemental result: T
∗ in the asymmetric case

Proposition A1 (Commitment delay for leaked soft types). Define a relevant history as one
where neither group has committed to an alternative and neither group’s type has been leaked.
Consider the continuation game at a relevant history. For each player i = a, b, there exists a
unique threshold time T ∗

i such that if both groups’ types are unknown, a soft group will commit
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to its preferred alternative if and only if t > T ∗
i .

Now consider a sub-history of h where i’s type is revealed at time t̄i < min{T ∗
a , T ∗

b }. Then,
there exists a unique T

∗
i (t̄i) > min{T ∗

a , T ∗
b } such that a soft group will commit to its preferred

alternative iff t > T
∗
i (t̄i).

Proof: Consider T
∗
a. The proposition claims that timing of leaks has an additional restric-

tion: t̄i < min{T ∗
a , T ∗

b }. That is, a soft type being leaked matters only before the earlier of
the two thresholds. To see why, consider the problem faced by a soft type of group a. First
suppose T ∗

b < T ∗
a and a’s type is revealed during the interval [T ∗

b , T ∗
a ]. Group b is already trying

to commit by the time a’s type is leaked. Therefore, a’s type being leaked will not affect a’s
learning about b’s type. Now suppose that T ∗

a < T ∗
b and a’s type is leaked during the interval

[T ∗
a , T ∗

b ]. At this point, a has already passed the threshold where they are sufficiently confident
that b is a soft type, and therefore is already trying to commit. Having a’s own type leaked
does not affect inferences that a has already made about b’s type, and hence does not affect a’s
behavior. Hence, T

∗
a is a function of t̄a and not of T ∗

b , as a’s type being leaked induces b to start
committing as soon as possible, making T ∗

b irrelevant.

Group a’s expected utility of committing to A at T
∗
a is[

(1 − pa)e−λb
sT

∗
a−µb

s(T ∗
a−t̄a)

]
ua(A) +

[
pae−ΛbT

∗
a

]
ua(SQ)

The continuation value of waiting is:

(1 − pa)e−λb
sT

∗
a−µb

s(T ∗
a−t̄a)

[
µa

s

µa
s + µb

s

ua(A) + µb
s

µa
s + µb

s

ua(B)
]
+

pae−ΛbT
∗
a

[
µa

s

µa
s + Λb

ua(SQ) + Λb

µa
s + Λb

ua(B)
]

Setting these equal and rearranging, I obtain

T
∗
a = 1

λb
s + µb

s − Hb

(
ln
[

ua(A) − ua(B)
ua(B) − ua(SQ)

µb
s

µa
s + µb

s

1 − pa

pa

Hb + µa
s

Hb

]
+ µb

sta

)
(A31)

A symmetric derivation shows that

T
∗
b = 1

λa
s + µa

s − Λa

(
ln
[

ub(B) − ub(A)
ub(A) − ub(SQ)

µa
s

µa
s + µb

s

1 − pb

pb

Λa + µb
s

Λa

]
+ µa

stb

)
(A32)

Thus, T
∗
i is given by:

T
∗
i = 1

λj
s + µj

s − (λj
h + µj

h)

[
ln
(

RDi
µj

s

µi
s + µj

s

1 − pi

pi

(λj
h + µj

h) + µi
s

(λj
h + µj

h)

)
+ µj

sti

]
(A33)
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D Supplemental figures

D.1 Welfare
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Figure A1. Effects of changing λs on miscoordination and welfare.
Parameter values: µs = 1

3 , λh + µh = 1, 1−p
p

= 1
4 , ua(A)−ua(B)

ua(B)−ua(SQ) = 1
2
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(a) λs = 1
3
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(c) λs = 2
3

Figure A2. Effects of changing µs on welfare, as conditioned by λs. Panel (a) has parameters
identical to those used in Figure 4. As I progressively increase λs in panels (b) and (c), the
likelihood that one-sided asymmetry will be triggered increases, and comes to dominate the
aggregate effect. (Note that increasing λs curtails the range of possible values for µs.)
Parameter values: λh + µh = 1, 1−p

p
= 1

4 , ua(A)−ua(B)
ua(B)−ua(SQ) = 1

2
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D.2 Asymmetric setting
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Figure A3. Effects of higher λb
s and µb

s on equilibrium delay. Other parameter values are as
in Figure 2.
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Figure A4. Effect of higher λb
h + µb

h on best responses. λb
h + µb

h = 2. Other parameter values
are as in Figure 2.
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